Introduction

Conducted jointly by Western Monmouth Utilities Authority (WMUA) and Kleinfelder

Funded by NJDEP grant maintain surface water quality standards

Area of interest – Duhernal Lake, NJ

Context

1

Reducing NPS P load may reduce plant growth, meet WQS

3

Methods

- 1. Use EPA's PLET to characterize NPS loads
- 2. Use GIS to derive model inputs (Union tool)
- 3. Delineate smaller watersheds to visually inspect for "hotspots"

g Wetlands
Agriculture
Barren Land
Forest
Urban
Water
Wetlands

■A ■A/D ■B ■B/D ■C ■C/D ■D ■WATER

Using GIS

HUC-14 Sub-Watersheds

Using GIS

Watershed Delineation

Preliminary PLET Results

Total P Load by Land Cover

Total P runoff: ~24,000 lb/yr

Total P Load by HUC-14

McGellairds Brook (above Taylors Mills)
 Manalapan Brook (above 40d 16m 15s)
 Manalapan Bk(incl LkManlpn to 40d16m15s)
 Manalapan Brook (below Lake Manalapan)
 Weamaconk Creek
 Matchaponix Brook (above/incl Pine Bk)
 Barclay Brook
 Matchapite Robbits Restanting (above for the barbard)

Next Steps

Model Best Management Practices (BMPs) Improve precision of model inputs

Simulate stormwater basin hydrology

Thanks For Listening!

Any questions?