APPLICATION OF GEOSPATIAL INTELLIGENCE IN SECURING CRITICAL INFRASTRUCTURE

By. Joshua Gollapudi

WHAT IS GEOSPATIAL INTELLIGENCE?

- Also known as GEOINT
- Analyzing and using imagery and geospatial information to describe, assess, and visualize the Earth's physical features and activities
- Includes geographic information such as maps, satellite data, and GPS
- Applications in national security and military, surveillance, environmental monitoring, emergency response, and intelligent vehicle navigation
- National Geospatial-Intelligence Agency (NGA): a US agency that provides geospatial intelligence (GEOINT) to support national security

WHAT IS CRITICAL INFRASTRUCTURE?

- Systems, assets, and networks that are vital to the function of society
 - Utilities: electricity, clean water, waste management
 - Transportation: airports, roads, bridges, railways, tunnels, shipping ports
 - Communication: networks, telephone lines, broadcasting systems
 - Healthcare: hospitals, clinics, emergency services
 - Financial Services: banks, stock exchange
 - Emergency Services: police, fire stations, emergency response (911)
 - Food Supply: Agriculture production and food distribution

WHY IS CRITICAL INFRASTRUCTURE IMPORTANT?

- Public Safety and Health
 - Ensures access to essential services (e.g., emergency response, healthcare)
 - Protects citizens from disruptions in basic need
- National Security
 - Protects against threats (e.g., cyberattacks, terrorism)
 - Critical for defense and military operations
- Economic Stability
 - Supports the economy by maintaining operations of key industries
 - Facilitates trade and commerce, ensuring the flow of goods and services

GEOSPATIAL DATA APPLICATIONS IN SECURING CRITICAL INFRASTRUCTURE

- Threat Mapping
 - Analyze geographic areas prone to specific threats (e.g., natural disasters, attacks, criminal activity)
 - Identify patterns and trends that inform risk assessments and resource allocation
- Risk/Vulnerability Assessment
 - Pinpoint critical assets and their geographic vulnerabilities
 - Assess potential impacts of various threat scenarios on infrastructure components
- Incident Response Planning
 - Utilize real-time geospatial data to improve situational awareness during incident
 - Coordinate emergency response efforts by mapping the locations of resources and identifying affected

areas

CASE STUDY: RUSSIAN-UKRAINE WAR

- Russia has targeted Ukraine's civilian critical infrastructure in order create instability, cripple the economy, and demoralize the Ukrainian public
- Targeted: Energy Infrastructure, Water Supply Systems, Transportation Networks, Telecommunications, Healthcare Facilities, Industrial sites
- Carried out missile and drone strikes, artillery shelling, cyberattacks, ground assaults, and naval blockades
- Effects of these attacks
 - Humanitarian Crisis
 - Crippled Economy
 - Military Strain

INTERNATIONAL AID TO UKRAINE FOR CRITICAL INFRASTRUCTURE

- Humanitarian Assistance: \$15 billion
 - Food, Shelter, Healthcare, Water, Energy
- Economic Support: \$30 billion
 - Public Administration, Economic Stabilization, Public Services
- Reconstruction and Recovery: \$50 billion
 - Energy, Transportation, Housing, Public Institutions

CASE STUDY: GEOINT UTILIZATION IN THE WAR

- Platforms and Sensors
 - HawkEye 360: satellites that monitor RF signals and sensors that capture GPS interference over Ukraine
 - Spire: nanosatellites that track aviation traffic
 - ICEYE: synthetic aperture radar (SAR) satellites that provide imagery
- Precision
 - High Mobility Artillery Rocket System (HIMARS): rapid and precise mobile artillery system
 - Observe-Orient-Decide-Act (OODA) Loop: Al used to process data, analyze live battlefield situations, and plan strikes

select targets,