STEM VOLUME MEASUREMENT OF TEMPERATURE NATURAL FORESTS FROM MOBILE MAPPING POINT CLOUDS

Jinyuan Shao

Department of Forestry and Natural Resources, Purdue University

11/3/24

Motivation

Stem volume is a key attribute in forest inventory

- Stem volume is the basis of timber and carbon estimation.
- The global timber market is expected to grow to \$1.15 trillion by 2028.
- Temperate forests provide high valuable hardwood but grow slow.
- An automated solution is needed to localize and measure every single stem.

Objective

Stem volume with LiDAR remote sensing

- Mobile mapping systems provide large area and high-density point clouds. However,
 - 1. Understory is too complex to detect and segment stems
 - 2. Irregular stem shape results in inaccurate stem volume

 Can we derive accurate single stem volume in complex temperate forests with mobile mapping point clouds?

Methodology: understory removal

Deep learning for understory removal

Methodology: stem detection and segmentation

Bidirectional Stem Growing (BSG)

Methodology: stem reconstruction

Sector Median Point (SMP)

Experiments

Datasets

-	Tab 1.	Summary	of the main	characteristics	for datasets used in this	
ç	studv					

	Dataset I	Dataset II	Dataset III	Dataset IV
Country	US	US	Germany	Switzerland
Dominant species	Oak, walnut, elm	Maple and oak	European beech	European beech, fir
Area (m2)	32708	25584	11632	7843
# of trees	1443	454	407	160
Stem density	441	177	349	204
Understory complexity	315	235	130	877
Season	Leaf-off	Leaf-on	Leaf-off	Leaf-on
Mobile mapping system	Hovermap ST	Hovermap ST	ZEB Horizon	ZEB Revo RT
Average point density	11554	25033	4312	15777

Experiments

Results

	Completeness	Correctness	Mean accuracy of detection
Dataset I	99.1%	100%	99.6%
Dataset II	98.2%	100%	98.7%
Dataset III	100%	100%	100%
Dataset IV	95%	100%	97.5%

Tab 2. Stem detection accuracy on four datasets.

	Earth mover's distance	Hausdorff distance	Chamfer distance
Dataset I	0.18	0.96	0.23
Dataset II	0.16	0.75	0.21
Dataset III	0.19	1.25	0.25
Dataset IV	0.15	0.74	0.21

Conclusion

Stand-level single stem volume can be measured from mobile mapping point clouds

THANK YOU

Please reach out to <u>jvshao@purdue.edu</u> for more information.

