

Any-Scale Spatial Analysis on Databricks

Michael Johns | Lead Geospatial Product Specialist

©2024 Databricks Inc. – All rights reserved

Agenda

1	Democratizing Data + Al
2	Spatial on Databricks
3	DGGS "Hybrid" Approaches
4	Unified Data Access + Sharing
5	What's Next?

2

Democratizing Data + Al

The data and AI company

Gartner	LEADER 2023 Cloud Database Management Systems		
Gartner	LEA 2024 Dat & Machine	DER a Science e Learning	
Forrester	Forrester	Forrester	
WAVE LEADER 2023	WAVE LEADER 2024	WAVE LEADER 2024	
Cloud Data Pipelines	Data Lakehouses	Al Foundation Models For Language	

Analytic Stream

Processing

10,000+ global customers

Every company wants to be a Data + Al company

Data estate is fragmented

©2024 Databricks Inc. – All rights reserved

Governance of the entire data estate is hard

Own your data

Eliminate silos

Read and write any data in any open format with full interoperability

Eliminate unnecessary costs from multiple copies of data

Unify governance for all data + Al

Databricks Data Intelligence Platform

Production AI that reasons on your data is elusive

85% have not made it into production

Creating the Data Intelligence Platform

WSJ NEWS EXCLUSIVE | CIO JOURNAL

Databricks Strikes \$1.3 Billion Deal for Generative AI Startup MosaicML

The deal aims at connecting businesses' data with services to help them build their own, cheaper language models, Databricks CEO says

By Angus Lotenand Belle LinJune 26, 2023 at 7:40 am ET

LLMs maxing out on general intelligence tests

General intelligence

Consumer models trained on a broad dataset **disconnected** from your business data

Data intelligence

Al **connected** to your customer data and able to solve domain-specific problems

Build agent systems with Databricks

Prepare data		Build agents		Deploy agents		Evaluate agents
Data ingestion		Model tuning		Agent serving		LLM judges
ML features	-(>)-	Tool catalog	-(>)-	MLOps/LLMOps	-	Peer labeling
Vector index		Function calling		Lineage		Tracing
	J		J		J	
		Gove	ern a	gents		
		. Gov Al guardrails	ern a	gents Credentials		

Mosaic Al

How can Databricks help?

Get better answers from your data

Consolidate data, AI and governance silos with a unified platform, democratize data and allow everyone to get valuable insights rapidly.

Deliver generative AI

Easily combine generative AI models with your unique data to deliver a sustainable competitive advantage.

Optimize costs and improve ROI

The Databricks Data Intelligence Platform helps customers realize an average ROI of 482% with a payback period of as few as 4 months.

Minimize governance and security risks

Apply consistent policies across all your data and workloads with fine-grained insight into data lineage so that you know where data came from, where it's going and how it's being used, from BI to AI.

Spatial on Databricks

19

Α	В
latitude	longitude
41.12887998	-73.7100635
41.13365032	-73.7099659
41.13009945	-73.70991433
41.13018385	-73.70989947
41.13043715	-73.70985008
41.1309958	-73.70976019
41.13354633	-73.70968264
41.13453456	-73.71234567
41.13987875	-73.71245671
41.13987988	-73.71267892
41.13987991	-73.714687912
41.14567889	-73.714522467

Anything with Lat/Long coordinates

Geospatial data is everywhere...

Lakehouse: Data Warehouse + Data Lake

For <u>spatial workloads</u>, how to best bridge the gap between?

Data + Al maturity

Business + Technology driving organizational changes

Data + Al Maturity

Why Geospatial on the Lakehouse?

Build a data asset strategy to enable multiple use cases

Geospatial + Lakehouse

Geospatial - Current State

1000+ Customers use Databricks for Geo

Built-in Geospatial Functions

- 30+ H3 APIs
- 60+ Spatial SQL [Preview]
- Initial GeoHash [Preview]
- Available Everywhere: Photon + Notebooks + DBSQL

Flexible Platform

- Open Source libraries
- Commercial libraries + Partners
- Vector, Raster, Lidar, +

Geospatial - Current State

Distributed Performance Journey

Single Node Libraries	Spark Frameworks	Product Features	
e.g. GDAL, GeoPandas, RasterIO	e.g. Analytics Toolbox, Mosaic, Sedona, Esri GAE	H3 + Spatial SQL	
 Can use only on Driver or Single Node Cluster Can apply UDF patterns to distribute Libraries can be complemented by use of Mosaic or avoided altogether 	 Mosaic is aligned with Databricks Product, data engineering unified Mosaic offers Spark APIs powered by GDAL + JTS Works with other frameworks 	 The fastest H3 API implementation through Photon Engine, also used by Mosaic Support for Spatial SQL + in-memory geospatial types [Preview] 	
 Flexible, precise patterns Relatively slower at scale with UDFs The second second	 + Distributed, precise patterns + Relatively faster at scale through Spark optimizations (Mosaic best for Databricks) - Each have tradeoffs in indexing decisions 	 + H3: Very fast at scale + Spatial SQL collecting feedback from customers Control Control Contro Control Control Control Control Contro Control Control Control	

Geospatial Reference Architecture

Spatial Data Engineering

Orchestrating production grade processing pipelines

- Data orchestration through
 Databricks Workflows
- Delta Live Tables manage your full data pipelines
- Simplifies data engineering with a curated data lake approach through Delta Lake

Databricks Solutions and more

Get your Geospatial Lakehouse journey started

Industrial AI: Increase Crop Yields Autonomous and location-driven agriculture

Industrial Al: Increase Crop Yields

Tons of sensors, vision + guidance systems and wireless connectivity

- Trillions of records / several petabytes
- Dozens of layers of hundreds millions of unique acres
- Hundreds of ML features created and automatically maintained

"Cameras continually monitor images ... We use machine learning to analyze grain quality and automatically adjust the operating parameters of the machine if any damage is detected to the grains."

Blog | Keynote from DAIS

Use Cases: Image + Raster Workloads

Geospatial cuts across every industry, blended with other sources

Oil & Gas

Pipeline predictive maintenance + monitoring, change detects

Agriculture

Crop yields, weed detects, climate

Autonomous Vehicles

Object detects, collision avoidance, navigation; also, offroad, e.g. self-driving large mining equipment

Financial Services

Cars in parking lots, ships in ports, construction, crop yields, natural catastrophes, fires, tracking renewable transition

National Security & Response

Orchestrating SAR image formation, pattern of life, situational awareness, manmade + natural disasters, warfighting

Image Segmentation with Databricks

From ingestion to prediction

End-to-end pipeline...

- Incrementally ingest datasets
- Clean, standardize, and join datasets
- Train Deep Learning model
- Deploy model for production

<u>Blog Link</u>

Stantec + Databricks: Flood Predictor

Secure, cloud-based solution to predict where and when flooding events will happen.

- 1. Ingests various open datasets
- 2. Performs geospatial computations
- 3. Publishes high-quality features to Feature Store
- 4. Spatial ML model trained on features

DGGS "Hybrid" Approaches

Scalable Geospatial Analytics with H3

Supported natively in Databricks

Grid indexing systems are ideally suited for scale

Hierarchical system offers flexibility

Easy and effective visualization

H3 Resolution	Average Hexagon Area (km ²)	Average Hexagon Edge Length (km)	Number of unique indexes
0	4,250,546.8477000	1,107.712591000	122
1	607,220.9782429	418.676005500	842
2	86,745.8540347	158.244655800	5,882
3	12,392.2648621	59.810857940	41,162
4	1,770.3235517	22.606379400	288,122
5	252.9033645	8.544408276	2,016,842
6	36.1290521	3.229482772	14,117,882
7	5.1612932	1.220629759	98,825,162
8	0.7373276	0.461354684	691,776,122
9	0.1053325	0.174375668	4,842,432,842
10	0.0150475	0.065907807	33,897,029,882
11	0.0021496	0.024910561	237,279,209,162
12	0.0003071	0.009415526	1,660,954,464,122
13	0.0000439	0.003559893	11,626,681,248,842
14	0.0000063	0.001348575	81,386,768,741,882
15	0.000009	0.000509713	569,707,381,193,162

https://uber.github.io/h3/#/documentation/core-library/resolution-table

resolution = 5

resolution = 7

resolution = 6

3

501

495

7A

lew York

resolution = 9

C mapbox

©2024 Databricks Inc. – All rights reserved

Res 15 is $< 1m^2$ or \sim space of 1 person

🕑 mapbox

663

YYYYYYYY YYYYYYY mmmm $\gamma\gamma\gamma\gamma\gamma\gamma$ 1110000 $\gamma\gamma\gamma\gamma\gamma\gamma$ YYYYYY \dot{m} mmm ∞ ITT. $\dot{\alpha}$ ∞

505

Example: Detect Flight Holding Patterns w/H3

Answer a number of spatial queries without Spatial SQL

Creating safer roadways for U.S. drivers

Texas A&M Transportation Institute unlocks car sensor data on Databricks

100s

Faster

Of terabytes of spatial data unified for better roadways

Time-to-insights to support optimized transportation safety

- 150 terabytes or 1.2 trillion GPS points
- Seamless integrations with Power BI & Tableau
- Databricks H3 indexing for geospatial models

"The Databricks Data Intelligence Platform helps us easily ingest and collaborate on large datasets with trillions of GPS points. Now that we're effectively visualizing and analyzing connected vehicle and geospatial data, we can continue innovating on transportation safety without limitations."

Customer Story

Solution Enabler: Scaled KNN

Spatial K-Nearest-Neighbors model w/ mlflow integration

Use cases covered in the blog:

- 1. Location-based advertising, personalized based on purchase history
- 2. Customer segmentation, based on location and similarities
- 3. Retail, e.g. store location
- 4. Real Estate, e.g. property searches
- 5. Traffic, e.g. roads with highest risk for car crash

I need nearest thing(s) of interest for up to every row of my data type of problems...

KNN Docs | Notebook | Blog

Vector data processing approaches

Pure vector	Hybrid (Tessellation)	Pure grid-based	
Used in "classic" GIS processing. Good for OLTP and small datasets	"Cuts" the original polygon on grid cell boundaries and adds cell IDs.	Converts polygons & points to grid cell IDs, then operates only on cell IDs.	
Databricks support is provided by third party libraries e.g. Geomesa, Sedona, and Mosaic.	Databricks provides native support for H3 grid . Vector support is provided by Mosaic .	Databricks provides native support for H3 grid . Other grids are worked on in Mosaic	
 + Maintains full detail - Slow at scale 	 + Maintains full detail [through chips] + Fast at scale - Requires tessellation 	+ Very fast at scale- Loses some detail	
ANNELSER ANNELSER BERVER HEIT Processing withis approach	Art th Nost flexible on Lakehouse!	Most performant on Lakehouse!	

Optimization journey

Decision Tree for Spatial Joins

♦ databricks

Link to **Blog**

Reference Join Pattern

[1] Coordinates -> H3

H3 API + Liquid Clustering to prepare lat / Ion

- Uses function <u>h3_longlatash3</u>
- <u>Liquid Clustering</u> using cellid
- Numeric cellids much better for performance
- H3 resolution 6 used for this example

databricks

6 7 8 9 10 11 12 (66) 5	SELECT h3_longla FROM trip); execute liquid o OPTIMIZE trip_h3; SELECT * FROM trip_ spark Jobs	tash3(pickup_longitude clustering _h3 LIMIT 10;	, pickup_latit	ude, 6) AS pickup_cellid, *			
Table	_sqldf: pyspark.sql.conne	ct.dataframe.DataFrame =	pickup_cellid: long	, trip_row_id: long 18 more fields]			QY
	1 ² 3 pickup_cellid	123 trip_row_id	A ^B _C vendor_id	🛱 pickup_datetime	🛱 dropoff_datetime	123 passenger_count	1.2 trip_distanc
1	604222352397434879	-1928445750670314453	VTS	2009-06-18T21:25:00.000+00:00	2009-06-18T21:39:00.000+00:00	1	
2	604222352263217151	-7362211067542464895	CMT	2014-05-04T13:19:06.000+00:00	2014-05-04T13:44:38.000+00:00	1	
	604222352263217151	-4514160269029825361	CMT	2014-05-05T00:36:02.000+00:00	2014-05-05T00:44:17.000+00:00	1	
3	604222352263217151	-7968889011037105742	CMT	2014-05-04T15:28:15.000+00:00	2014-05-04T15:36:01.000+00:00	1	
3 4	604222352263217151	-6755337482988695663	СМТ	2014-05-04T13:56:27.000+00:00	2014-05-04T14:03:33.000+00:00	1	
3 4 5	004222332203217131		CMT	2014-05-05T01:12:05.000+00:00	2014-05-05T01:27:48.000+00:00	1	
3 4 5 6	604222352263217151	1349114653060541076	0				
3 4 5 6 7	604222352263217151 604222352263217151 604222352263217151	1349114653060541076 2370329712272608276	СМТ	2014-05-04T20:13:20.000+00:00	2014-05-04T20:31:33.000+00:00	1	
3 4 5 6 7 8	604222352263217151 604222352263217151 604222352263217151 604222352263217151	1349114653060541076 2370329712272608276 2882698725654968184	CMT CMT	2014-05-04T20:13:20.000+00:00 2014-05-05T01:19:16.000+00:00	2014-05-04T20:31:33.000+00:00 2014-05-05T01:29:45.000+00:00	1	
3 4 5 6 7 8 9	604222352263217151 604222352263217151 604222352263217151 604222352263217151 604222352263217151	1349114653060541076 2370329712272608276 2882698725654968184 8322486265112795975	смт смт смт	2014-05-04T20:13:20.000+00:00 2014-05-05T01:19:16.000+00:00 2014-05-04T19:00:42.000+00:00	2014-05-04T20:31:33.000+00:00 2014-05-05T01:29:45.000+00:00 2014-05-04T19:28:29.000+00:00	1 1 2	

[2] Areal Geometries -> H3

H3 API + Liquid Clustering to prepare polygons

9

10

- Uses function
 <u>h3_tessellateaswkb</u>
- <u>Liquid Clustering</u> using cellid
- Use of INLINE to shred the array result into cellid, core, and WKB chip
- Numeric cellids much better for performance
- H3 resolution 6 used for this example

	%sql									
2	table will use liquid clustering									
3	The use of inline allows us to cluster by 'cellid'									
4	NOTICE: we do not include the full geometry 'g' here;									
5	rather, keep only vector chips per cellid CREATE OR REPLACE TABLE state_h3 CLUSTER BY (cellid) AS									
6										
7	(SELECT state_row_id, INLINE(h3_tessellateaswkb(g, 6)), * EXCEPT(state_row_id, g)									
8										
9	FROM state_poly									
10);									
11										
12	execute liquid	execute liquid clustering								
13	OPTIMIZE state_h3;									
14										
(22) S	Spark Jobs									
(22) S	Spark Jobs _sqldf: pyspark.sql.coni e	nect.dataframe.DataFrame	= [state_row	/_id: long, cellid: long 3 more fields]						
(22) S	Spark Jobs _sqldf: pyspark.sql.com e v +	nect.dataframe.DataFrame	= [state_row	_id: long, cellid: long 3 more fields]						
(22) §	Spark Jobs _sqldf: pyspark.sql.com e v + 1 ² 3 state_row_id	nect.dataframe.DataFrame	= [state_row	Lid: long, cellid: long 3 more fields]						
(22) S Table	Spark Jobs _sqldf: pyspark.sql.com e v + 1 ² 3 state_row_id 1	nect.dataframe.DataFrame 1 ² 3 cellid 604222584191451135	= [state_row <u>≠=</u> core true	/_id: long, cellid: long 3 more fields] Q 015 015 025 025 025 025 025 025 025 025 025 025 026 035 040 055 055 056 055 055 055 055 055 055 055 055 055 055 055 056 057 0						
(22) \$ Table 1 2	Spark Jobs _sqldf: pyspark.sql.com e ~ + 1 ² 3 state_row_id 1 1	nect.dataframe.DataFrame 1 ² 3 cellid 604222584191451135 604222540839124991	= [state_row <u>*=</u> core true true	id: long, cellid: long 3 more fields] Q Isis chip > AQMAAAABAAAABwaAAABwaAAAEyryLgnmlLAsXwZaYI7REBuW9j2/ZxSwAy2ks+LOkRAysw/2didUsDy2IXVjjZEQDZHXTjem1LAK0hF+Y > AQMAAAABAAAABwaAAABwaAAA83vC0slFLAfLh81d7dQ0AP3St095ZSwGrM2lzr3ENAdfKM98+XUsC0zPxM+NhDQC+EJendlVLAlege						
(22) S Table	Spark Jobs _sqldf: pyspark.sql.com e ~ + 1 ² 3 state_row_id 1 1 1	nect.dataframe.DataFrame 1 ² 3 cellid 604222584191451135 604222540839124991 604222345149677567	= [state_row <u>*=</u> core true true true	id: long, cellid: long 3 more fields] Q 011 021 021 031 0						
(22) § Table	Spark Jobs _sqldf: pyspark.sql.conr e v + 1 ² 3 state_row_id 1 1 1 1	1 ² 3 cellid 604222584191451135 604222540839124991 604222345149677567 604233111693164543	= [state_row <u>*=</u> core true true true false	id: long, cellid: long 3 more fields] Q #101 Chip > AQMAAAABAAAABwAAABwAAAEyryLgnmlLAsXwZaYI7REBuW9j2/ZxSwAy2ks+LOkRAysw/2didUsDy2IXVjjZEQDZHXTjem1LAK0hF+Y > AQMAAAABAAAABwAAABwAAAByvC0slFLAfLh81d7dQ0AP3St095ZSwGrM2lzr3ENAdfKM98+XUsC0zPxM+NhDQC+EJendIVLAleg > AQMAAAABAAAABwAAABbwkAAABbryktLmlLAYtuBvt2QREAJaw3sK51SwJ0/jGHIj0RAllOm5wmeUsC9mEL034tEQJccJgMlnFLAQ00U > AQMAAAABAAAABgAAAABgAAAMDJ9HwMw1LAzKsfKXNsQ0BSs2ASicJSwPRu78TzbkNAbJmzDsy/UsANQeAR7W9DQEVXMpYmvlL						
(22) \$ Table 1 2 3 4 5	Spark Jobs _sqldf: pyspark.sql.com e ~ + 1 ² 3 state_row_id 1 1 1 1 1	1 ² 3 cellid 604222584191451135 604222540839124991 604222345149677567 604233111693164543 604222508626870271	= [state_row <u>*</u> core true true true false true	id: long, cellid: long 3 more fields] Q 011 0						
(22) \$ ►	Spark Jobs sqldf: pyspark.sql.com e ~ + 1 ² 3 state_row_id 1 1 1 1 1 1 1	1 ² 3 cellid 604222584191451135 604222540839124991 604222345149677567 604233111693164543 604222508626870271 604222563119267839	= [state_row <u>>=</u> core true true true false true false	id: long, cellid: long 3 more fields] Q **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** **** ***** ***** ************************************						

AQMAAAABAAABwAAABwAAAENFZVv3hVLAciONU7LXQ0CqP89awohSwLuZNLrB1kNA5TZM+pyJUsCnFz020NJDQJfaoU2th1LAX...

AQMAAAABAAABwAAANwdm+KGo1LA1yjSmvLqQ0DEphwzU6ZSwLjrquL76UNASJzbpSmnUsCM5NeBBuZDQIc0oX40pVL

AQMAAAABAAABwAAALUI3Vxdx1LAJDPNKiLtQ0CJVavvKMpSwNB85Xkk7ENAWteJR/nKUsAu0iSuLOhl

604222574259339263

604233090620981247

1 604222530907013119

true

true

true

7 D

A^Bc sta

New Jo

New Je

FLA43

[3] Tessellation technique: H3 + Geometry Harmonized

Point-in-Polygon join using already prepared tables

i **⇔ databricks**

Unified Data Access + Sharing

©2024 Databricks Inc. – All rights reserved

4

Delta Sharing: An open approach to data sharing

Volumes: Unity Catalog

Manage non-tabular data

- Arbitrary files [text, image, audio, video, PDF, or XML] governed inside schemas in UC alongside tables, models, + functions
- Metadata Patterns Emerge (heavy file payload with meta tables)

"[We thought that] we'll have to build some kind of abstractions around tables to deal with regular non-tabular files. With Volumes, we can rely on Unity Catalog for everything going forward." - **Nike**

Announcement Blog

😂 databricks

E.g. Raster Metadata Architecture

DELTA LAKE

Lakehouse + Spatial Al

Unified Data Model for all GIS Data

Vector + raster for "all spatial" analysis

What's Next?

53

Rideshare pick-up locations in New York City visualized in a Databricks Notebook using Kepler.gl

Spatial SQL Roadmap

Supercharge geospatial analysis

30+ H3-based indexing [Already GA] makes it easy to see spatial patterns, combine disparate data, visualize and integrate with ML

60+ Spatial Functions [Private Preview] – broad set of ST_ expressions provide flexibility for working with Vector data

Geometry / Geography Types [2024+] – read and write spatial data to native types, easily convert between WKT, WKB, GeoJson

Fast Spatial Joins [2024+] – efficient spatial query execution, builds on types + *will be ongoing improvements after initial release*

Additional ST_ Functions [2024+] – prioritizing additional customer and partner inputs

 $\ensuremath{\mathbb{C}2024}$ Databricks Inc. — All rights reserved

Map Visuals

Full refresh on visualizations-including Maps

- Point maps for lat/lon
 [Public Preview OCT]
- Automatic geocoding for choropleth maps [2024+]
- Geometry/Geography data (Point, Line, or Polygon) [2025]
- H3 Maps (hex bins) [2025]

Geospatial: Key Partners

Best-in-class technology + mindshare

CART●	esri	SAFE SOFTWARE
Spatial BI Platform	GIS Platform ArcGIS	Spatial ETL FME
 Native integration with Databricks H3 <u>Analytics Toolbox</u> [Download] <u>Builder</u> <u>Workflows</u> 	 Existing Spark extension: <u>GeoAnalytics Engine</u> 	 Spatial ETL Read/Write to all common spatial formats <u>Databricks Connector</u> [Preview]
 Future integration initiatives: Iterate on existing GeoParquet + RasQuet 	 Future integration initiatives: Integrate with ArcGIS CDW connections [requires public preview spatial types + perf] 	 Future integration initiatives: Native integration with Databricks Spatial SQL

Thank You!

©2024 Databricks Inc. – All rights reserved