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= Deep Learning is becoming ubiquitous,
especially for remote sensing analysis
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= Deep Learning is data hungry, but the _ S T S P AR
development of suitable training datasets is

time consuming and expensive 3DEP Generated
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= These costs require us to explore
alternative methods for training data
development

= A potential method is the application of
training data across spatial scales, but the
impact of such application has yet to be
quantified

= We compare 3DEP(1.5m) to NLCD(30m)
derived forest boundary training data to

purBANtify the impact on deep learning model : Training
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Discernable Patterns in Model Performance -
Univariate " -5~
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Relationship between Training Data and Source Imagery
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Impact of Environment Type
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Individual Model Performance by Environment Type

Imagery Source Resolution (F1 Scores)
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So What...?

= Higher spatial resolution training data produced more accurate models regardless of
imagery source spatial resolution, however, the gap in model performance (F1) was only
~2.7% even at its most extreme.

= Performance based on land cover varied greatly from average F1 scores of 0.923 in
homogenous forested areas to 0.684 in complex urban environments

= Although the results show no difference in training time between data sources, training data
chipping with 3DEP annotations took roughly 5 times longer.

= Other observations

= Training Chip Size: Sentinel source imagery was the only data subset strongly impacted by training
chip size (smaller training chips produced better results)

= Deeplab was much more efficient at training than U-Net but performed slightly worse

= Model accuracy relationships remained intact when total number of training chips was held
constant for all imagery sources (3 additional U-Net models tested at a chip size of 256 w/ 3848
total chips)
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